Influence of Noise Correction on Intra- and Inter-Subject Variability of Quantitative Metrics in Diffusion Kurtosis Imaging
نویسندگان
چکیده
Diffusion kurtosis imaging (DKI) is a promising extension of diffusion tensor imaging, giving new insights into the white matter microstructure and providing new biomarkers. Given the rapidly increasing number of studies, DKI has a potential to establish itself as a valuable tool in brain diagnostics. However, to become a routine procedure, DKI still needs to be improved in terms of robustness, reliability, and reproducibility. As it requires acquisitions at higher diffusion weightings, results are more affected by noise than in diffusion tensor imaging. The lack of standard procedures for post-processing, especially for noise correction, might become a significant obstacle for the use of DKI in clinical routine limiting its application. We considered two noise correction schemes accounting for the noise properties of multichannel phased-array coils, in order to improve the data quality at signal-to-noise ratio (SNR) typical for DKI. The SNR dependence of estimated DKI metrics such as mean kurtosis (MK), mean diffusivity (MD) and fractional anisotropy (FA) is investigated for these noise correction approaches in Monte Carlo simulations and in in vivo human studies. The intra-subject reproducibility is investigated in a single subject study by varying the SNR level and SNR spatial distribution. Then the impact of the noise correction on inter-subject variability is evaluated in a homogeneous sample of 25 healthy volunteers. Results show a strong impact of noise correction on the MK estimate, while the estimation of FA and MD was affected to a lesser extent. Both intra- and inter-subject SNR-related variability of the MK estimate is considerably reduced after correction for the noise bias, providing more accurate and reproducible measures. In this work, we have proposed a straightforward method that improves accuracy of DKI metrics. This should contribute to standardization of DKI applications in clinical studies making valuable inferences in group analysis and longitudinal studies.
منابع مشابه
Variability in diffusion kurtosis imaging: Impact on study design, statistical power and interpretation
Diffusion kurtosis imaging (DKI) is an emerging technique with the potential to quantify properties of tissue microstructure that may not be observable using diffusion tensor imaging (DTI). In order to help design DKI studies and improve interpretation of DKI results, we employed statistical power analysis to characterize three aspects of variability in four DKI parameters; the mean diffusivity...
متن کاملLocal Diffusion Homogeneity (LDH): An Inter-Voxel Diffusion MRI Metric for Assessing Inter-Subject White Matter Variability
Many diffusion parameters and indices (e.g., fractional anisotropy [FA] and mean diffusivity [MD]) have been derived from diffusion magnetic resonance imaging (MRI) data. These parameters have been extensively applied as imaging markers for localizing white matter (WM) changes under various conditions (e.g., development, degeneration and disease). However, the vast majority of the existing para...
متن کاملStroke assessment with diffusional kurtosis imaging.
BACKGROUND AND PURPOSE Despite being the gold standard technique for stroke assessment, conventional diffusion MRI provides only partial information about tissue microstructure. Diffusional kurtosis imaging is an advanced diffusion MRI method that yields, in addition to conventional diffusion information, the diffusional kurtosis, which may help improve characterization of tissue microstructure...
متن کاملInter- and Intra-Observer Repeatability of Quantitative Whole-Body, Diffusion-Weighted Imaging (WBDWI) in Metastatic Bone Disease
Quantitative whole-body diffusion-weighted MRI (WB-DWI) is now possible using semi-automatic segmentation techniques. The method enables whole-body estimates of global Apparent Diffusion Coefficient (gADC) and total Diffusion Volume (tDV), both of which have demonstrated considerable utility for assessing treatment response in patients with bone metastases from primary prostate and breast cance...
متن کاملAnalysis of the effects of noise, DWI sampling, and value of assumed parameters in diffusion MRI models.
PURPOSE This study was a systematic evaluation across different and prominent diffusion MRI models to better understand the ways in which scalar metrics are influenced by experimental factors, including experimental design (diffusion-weighted imaging [DWI] sampling) and noise. METHODS Four diffusion MRI models-diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), mean apparent pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014